# Open Questions and New Ideas on Hadron Colliders



Heather M. Gray, UC Berkeley/LBNL, 20 July 2020

...and beyond

## **Open Questions for the Energy Frontier**

- Unexplained experimental evidence
  - Nature of dark matter
  - Origin of the matter-antimatter asymmetry
  - Existence and hierarchy of neutrino masses
- Problems and puzzles
  - EW hierarchy problem or why is the Higgs boson so light?
  - Strong CP problem or why is theta so small?
  - Flavor puzzle or why are there three generations or quarks and leptons?

(Hadron) colliders have the potential to probe each these!

#### **Future Hadron Colliders**

- Future hadron colliders that have been considered
  - High-luminosity LHC (HL-LHC)
  - High-energy LHC (HE-LHC)/Lowenergy FCC (LE-FCC)
  - Future Circular Collider (FCC-hh)
  - Super Proton-Proton Collider (SppC)
- Other colliders, not covered here
  - e+e- colliders (Peskin, Robson, Klute, Q+Ruan)
  - LHeC/FCC-eh (Armesto)
  - Muon colliders (Lucchesi)
  - FCC-HI, heavy-ion physics
  - Flavour physics



SppC, various sites in China



## Why hadron colliders?

- Historically and in general pp colliders allow us to reach the highest possible energy
  - Large mass/energy reach in powerful searches for new physics
- However, as we've learnt from first the Tevatron and then the LHC, they are
  also capable of precision physics measurements despite the larger
  backgrounds compared to electron-positron colliders



## Precision Measurements

Questions relating to the Higgs boson will be clear target for any future collider due to its close connection with many open questions

## Higgs Boson couplings at the HL-LHC



#### **Decays**



https://arxiv.org/pdf/1902.00134.pdf

Assume uncertainties can be reduced by factor of 2 wrt LHC

## **HL-LHC:** Interpretation in K framework



Many couplings reach ~2% precision (Almost all) limited by theory uncertainties



Higgs at Future Colliders report: arXiv:1905.03764,

#### Higgs Precision at other future colliders





For HE-LHC assume another factor in 2 reduction in errors wrt HL-LHC

In many cases, FCC-hh obtains an order of magnitude improvement in precision over HL-LHC

Only inclusive measurements are used

\*FCC-ee crucial to obtaining model-independent Higgs coupling measurements: see talk by M. Klute

de Blas et al, Higgs Boson studies at future particle colliders

## Higgs precision with differential distributions







- There are changes to Higgs physics from moving to higher energies
  - Above 900 GeV, ttH production has the largest cross-section
- Many high p<sub>T</sub> Higgs bosons
  - Can expect additional constraints on Higgs boson couplings from differential measurements

FCC Physics Opportunities

## Higgs Precision at HE-LHC and FCC



de Blas et al, Higgs Boson studies at future particle colliders

## Interpretation within EFT Framework



#### Other SM measurements

- HL-LHC: Higgs mass to ~20 MeV
- HL-LHC low pile up run (200 pb-1 at 14 TeV; 5-10 weeks of running)
  - W mass 6 MeV (requires precise PDF)
  - Top mass 0.2-1.2 GeV (relation to pole mass)
- Projections for FCC-hh reach 3% on VBS  $W_LW_L$







Clearly expect
lepton colliders to
have superior
performance in
most cases where
they have energy
reach, but what
accuracy could we
get from FCC-hh?

## **Higgs Self-coupling**

- Key physics deliverable to probe mechanism of EW symmetry breaking
  - Direct searches
  - Indirect constraints from single Higgs production through loop effects



## Example: $bb\gamma\gamma$ channel



Sensitivity depends on systematic uncertainties

| Uncertainty source             | syst. I | syst. II | syst. III | Processes                       |
|--------------------------------|---------|----------|-----------|---------------------------------|
| b-jet ID eff. /b-jet           | 0.5%    | 1%       | 2%        | single H, HH, tt                |
| au-jet ID eff. $/	au$          | 1%      | 2.5%     | 5%        | single H, HH, $t\bar{t}$        |
| $\gamma$ ID eff. $/\gamma$     | 0.5%    | 1%       | 2%        | single H, HH                    |
| $\ell = e - \mu$ ID efficiency | 0.5%    | 1%       | 2%        | single H, HH,                   |
|                                |         |          |           | single V, VV,                   |
|                                |         |          |           | ${ m tar t V},\ { m tar t V V}$ |
| single H cross section         | 0.5%    | 1%       | 1.5%      | Н                               |
| $t\bar{t}$ cross section       | 0.5%    | 1%       | 1.5%      | Н                               |
| luminosity                     | 0.5%    | 1%       | 2%        | single H, HH,                   |
|                                |         |          |           | single V, VV,                   |
|                                |         |          |           | $t\bar{t},t\bar{t}V,t\bar{t}VV$ |
| HH cross section               | 0.5%    | 1%       | 1.5%      | НН                              |
|                                |         |          |           |                                 |

DELPHES simulation; no explicit pile-up



Mangano, Ortona, and Selvaggi, arXiv:2004.03505

## Searches for New Physics

Hadron collider are very powerful at directly probing for new physics. A challenge in making the physics case is deciding which directions are the most important to probe

#### **New Interactions or Particles**

- Are there any new particles or interactions beyond the SM?
- Direct (peak) or indirect (couplings)
- Direct observation
  - M  $\leq 0.3-0.5\sqrt{s}$  for hadron colliders
- Benchmark: simple sequential Z' model



## **Higgs Compositeness**

- Is the Higgs boson an elementary particle or composite?
- Limits from Higgs couplings, Drell-Yan searches
- Obtain limits on compositeness scale from ~I-4 TeV







#### **Contact Interactions**



Hadron collider sensitivity via Drell-Yan production

New physics in the interaction between the Higgs and vector bosons

Hadron collider sensitivity via Z boson p<sub>T</sub> distribution



## Strong SUSY: gluinos



HE-LHC extends HL-LHC mass reach by a factor of ~2 FCC-hh extends HL-LHC mass reach by a factor of ~5

## Strong SUSY: squarks



HE-LHC extends HL-LHC mass reach by a factor of ~2 FCC-hh extends HL-LHC mass reach by a factor of ~5-12

## Strong SUSY: Squarks



HE-LHC extends HL-LHC mass reach by a factor of ~2 FCC-hh extends HL-LHC mass reach by a factor of ~6

#### **Electroweak SUSY**

#### Wino



#### Higgsino



#### Higgsino and Wino Searches

Upper limit from DM abundance





- Searches for the case where the Higgsino or the Wino are dark matter candidates as the LSP in SUSY
- At hadron colliders, the most effective search technique is called "disappearing tracks"





## **Example: Disappearing Track for Higgsinos**

- The FCC-hh could probe Higgsinos up to ~I TeV (full range a WIMP candidate)
- Reach depends strongly on detector design and amount of pile-up
- How can we best design our tracking detectors for such searches?





Tan, et al. EW DM at Future Hadron Colliders



Terashi, et al. Disappearing tracks at FCC-hh

#### **Dark Matter**



Model-dependent limits from colliders probe the low mass range Based on results for Higgs→invisible decays

#### Example: Higgs→invisible results

Fit MET distribution in VBF Higgs production



## Feebly Interacting Particles (FIPs)

Range of possibilities and models

| Portal                           | Coupling                                                                                                                                                     |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vector (Dark Photon, $A_{\mu}$ ) | $-\frac{\varepsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$                                                                                                    |
| Scalar (Dark Higgs, S)           | $(\mu S + \lambda_{HS} S^2) H^{\dagger} H$                                                                                                                   |
| Fermion (Sterile Neutrino, N)    | $y_N LHN$                                                                                                                                                    |
| Pseudo-scalar (Axion, a)         | $\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu},\frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu},\frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$ |

Hadron colliders play a complementary role to targeted experiments

**Dark Photon** 





How could we include  $pp \rightarrow a \rightarrow \gamma \gamma$ ?

#### Conclusion

- Critical turning point for our field as we evaluate options and try to converge on what machine(s) we want to build next
- Short review of future hadron colliders
  - HL-LHC, HE-LHC, FCC-hh and SppC
- Key physics capabilities include precision Higgs couplings, the Higgs self-coupling and an extensive range of BSM searches
- Some ideas and open questions
  - Pile up what impact does 1000 collisions have? How can we mitigate it?
  - What energy? i.e. why 100 TeV vs 80 or 120 TeV?
  - Higgs coupling precision from differential measurements
  - How could new detector technologies impact physics reach?
    - Can we design trackers to improve long-lived particle searches?
    - How does 4D tracking improve physics capabilities?
  - Systematics: particularly theory systematics
    - Important to address in general; also relevant for comparing physics reach between hadron and lepton colliders

## Backup

#### FCC-hh

- New tunnel ~100 km tunnel located at CERN
- New 16 T magnets (20 T for 80 km)
  - High challenging technologically
- Energy: I00 TeV
- One stage of overall FCC project
  - Full spectrum from e<sup>+</sup>e<sup>-</sup> to heavy ions



|                                         | √s                               | L /IP (cm <sup>-2</sup> s <sup>-1</sup> ) | Int. L /IP(ab <sup>-1</sup> )   | Comments                                                             |
|-----------------------------------------|----------------------------------|-------------------------------------------|---------------------------------|----------------------------------------------------------------------|
| e <sup>+</sup> e <sup>-</sup><br>FCC-ee | ~90 GeV Z<br>160 WW<br>240 H     | 230 x10 <sup>34</sup><br>28<br>8.5        | 75 ab <sup>-1</sup><br>5<br>2.5 | 2 experiments  Total ~ 15 years of                                   |
|                                         | ~365 top                         | 1.5                                       | 0.8                             | operation                                                            |
| pp<br>FCC-hh                            | 100 TeV                          | 5 x 10 <sup>34</sup><br>30                | 2.5 ab <sup>-1</sup><br>15      | 2+2 experiments<br>Total ~ 25 years of<br>operation                  |
| PbPb<br>Fcc-hh                          | $\sqrt{s_{NN}} = 39 \text{ TeV}$ | 3 x 10 <sup>29</sup>                      | 65 nb <sup>-1</sup> /run        | 1 run = 1 month operation                                            |
| ep<br>Fcc-eh                            | 3.5 TeV                          | 1.5 10 <sup>34</sup>                      | 2 ab <sup>-1</sup>              | 60 GeV e- from ERL<br>Concurrent operation<br>with pp for ~ 20 years |
| e-Pb<br>Fcc-eh                          | $\sqrt{s_{eN}}$ = 2.2 TeV        | 0.5 10 <sup>34</sup>                      | 1 fb <sup>-1</sup>              | 60 GeV e- from ERL<br>Concurrent operation<br>with PbPb              |

#### **HL-LHC/HE-LHC**

- Existing LHC tune
- Reuse the existing LHC tunnel
- Increase the magnetic field by installing the I6T magnets from the FCC-hh
  - →Energy increases from 14 to 27 TeV
- Factor of 3 increase in luminosity over HL-LHC: 10 ab-1





#### **SppC**

- New 100 km tunnel in China
- Magnets: initially 12 T; later 20 T
- Energy: 75 I50 TeV
- Luminosity: 30 ab-1

#### Second step after CEPC



Physics case not yet mature, but can be expected to be the same as for FCC-hh for same energy/luminosity

SppC Layout



SppC Submission to ES

## Open Question: High field magnets





hadron collider schedule depends on magnet R&D

## FCC-hh inputs

| FCC-hh                                                             |           |
|--------------------------------------------------------------------|-----------|
| $\delta\mu_{ggF,4\mu}$                                             | 0.019     |
| $\delta\mu_{ggF,4\mu} \ \delta\mu_{ggF,\gamma\gamma}$              | 0.015     |
| $\delta\mu_{ggF,Z\gamma}$                                          | 0.016     |
| $\delta\mu_{ggF,\mu\mu}$                                           | 0.012     |
| $\delta({ m BR}_{\mu\mu}/{ m BR}_{4\mu})$                          | 0.013     |
| $\delta(\mathrm{BR}_{\gamma\gamma}/\mathrm{BR}_{2\mathrm{e}2\mu})$ | 0.008     |
| $\delta(\mathrm{BR}_{\gamma\gamma}/\mathrm{BR}_{\mu\mu})$          | 0.014     |
| $\delta({ m BR}_{\mu\mu\gamma}/{ m BR}_{\gamma\gamma})$            | 0.018     |
| $\delta(\sigma_{ttH}^{bb}/\sigma_{ttZ}^{bb})$                      | 0.019     |
| Invisible decays                                                   |           |
| $\mathrm{BR}_{\mathrm{inv}}$                                       | < 0.00013 |
| Direct constraint on Higgs self-interaction                        |           |
| $\delta \kappa_3$                                                  | 0.05      |

| FCC-hh                                                                        |                |
|-------------------------------------------------------------------------------|----------------|
| (Extra inputs used in                                                         | $\kappa$ fits) |
| $\overline{\delta(\sigma_{WH}^{H	o\gamma\gamma}/\sigma_{WZ}^{Z	o e^+e^-})}$   | 0.014          |
| $\delta(\sigma_{WH}^{H	o	au	au}/\sigma_{WZ}^{Z	o	au	au})$                     | 0.016          |
| $\delta(\sigma_{WH}^{H	o bb}/\sigma_{WZ}^{Z	o bb})$                           | 0.011          |
| $\delta(\sigma_{WH}^{H ightarrow WW}/\sigma_{WH}^{H ightarrow \gamma\gamma})$ | 0.015          |

#### Timescale and cost for Hadron Colliders



start date driven by magnet R&D

| Project | Type | Energy<br>[TeV] | Int. Lumi.<br>[a <sup>-1</sup> ] | Oper. Time<br>[y] | Power<br>[MW] | Cost              |
|---------|------|-----------------|----------------------------------|-------------------|---------------|-------------------|
| FCC-hh  | рр   | 100             | 30                               | 25                | 580 (550)     | 17 GCHF (+7 GCHF) |
| HE-LHC  | рр   | 27              | 20                               | 20                |               | 7.2 GCHF          |

tunnel cost